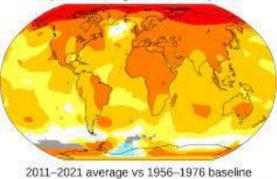

IUFRO2023

González-Pelayo, O.; Guimarães, M.H.; Pinto-Correia, T.



Problem

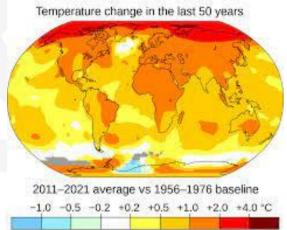
Climate change

Temperature change in the last 50 years

-1.0 -0.5 -0.2 +0.2 +0.5 +1.0 +2.0 +4.0 °C

+ Soil Degradation

No water in soil, No nutrientes in soil,


No biomass in soil

DESERTIFICATION

Solution??

Climate change

-1.8 -0.9 -0.4 +0.4 +0.9 +1.8 +3.6 +7.2 °F

+ Soil Correction

Lime, Ash, sewage, biochar, ...,

YES water in soil,

YES nutrientes in soil,

YES biomass in soil

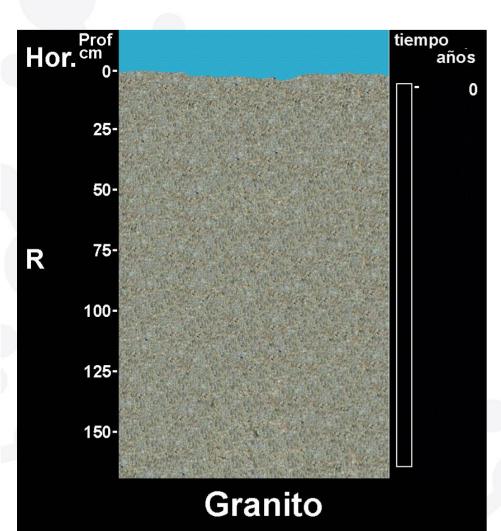
Reverse DESERTIFICATION

Her. Abegoaria_Dr. Caetano Oliveira Soares

Her. Abegoaria_No tillage >10years, Dolomitic limestone appl + ash + sewage sludge.

Neighbour Her. Abegoaria_Dr. Caetano Oliveira Soares

Her. Abegoaria_Neighbour. Tillage, No Dolomitic limestone


Hypothesis

To correct soil limitant factos, thus

make soil functionning

Soil is dynamic

soil ? = essentially a <u>non-renewable resource</u>, at least for a human lifetime

SOIL FORMATION FACTORS (N=5)

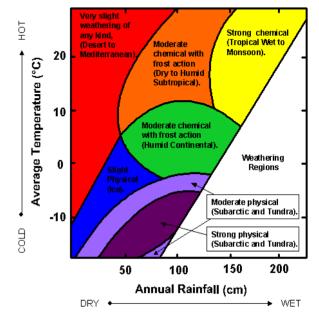
Bedrock + weather + relief + organisms + time = SOIL

Velocity of formation (slow)

+/-1Tn/ha/year, Verheijen et al. (2009)

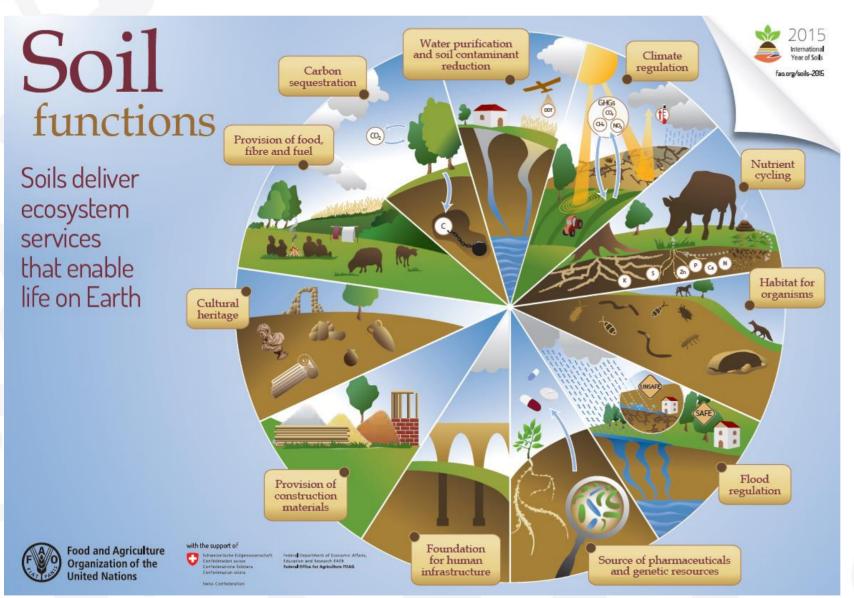
*Based on bedrock properties:

Soil water & Temperature drives


-Hard rock — slow. i.e.: Granite, Quartz

-Soft rock — quick. i.e. Clay, sandstones

*Based on weather


SOIL WEATHERING

*Based on time

Verheijen et al. (2009) https://doi.org/10.1016/j.earscirev.2009.02.003

Soil performs Functions that delivers ECOSYSTEM SERVICES

Major Soil Functions Soil structure maintenance Nutrient cycles Carbon transformations; **Regulation of pests and diseases Soil Ecosystem Services** ES1. Water & Soil conservation ES2. Nutrient cycling ES3. Carbon sequestration

ES4. Biodiversity

Soil degradation promotes desertification

Soil as a <u>non-renewable resource</u> (at human scale) availability and scarcity Soil degradation means loss of FUNCTIONS **THREATS** SOM decline Erosion Compaction Pollution Impermeabilization

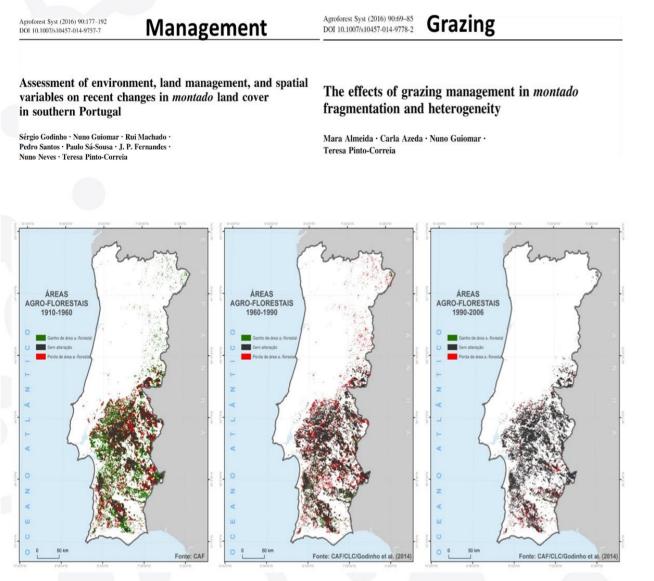
Montado: unique Mediterranean silvo-pastoral system

T. Pinto-Correia, personnel communication

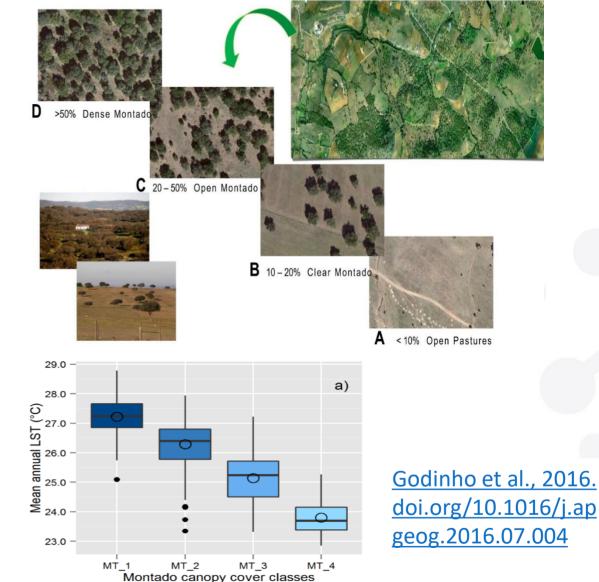
since the 13th century and expanded in the 18th century

wood pastures for high quality livestock + cork production

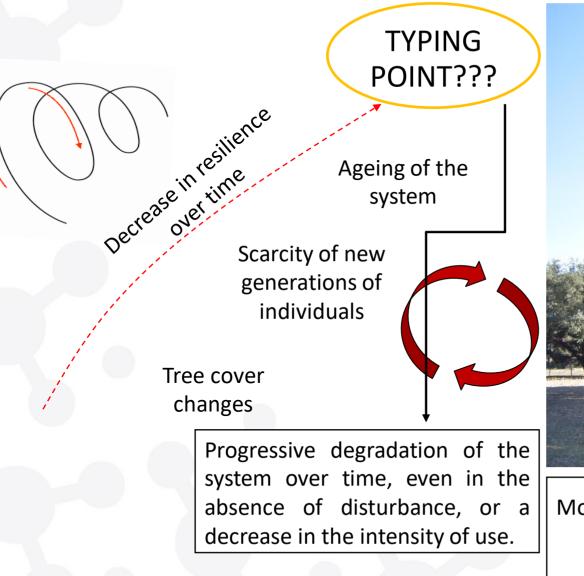
open forest (< 80 trees/ha), functional complexity, high spatial fuzzyness



Montado spatial dynamics


From 1990 to 2006 losses of ~90.000 ha of Montado (5625 ha/year)

FACTORS



Canopy cover cover decline in Montado

Variações na composição e estrutura: diferenciação de manchas com diferentes características

Cathastrophic Shift

Montado developed on Px soil type (Luvisol). NO NEW INDIVIDUALS.

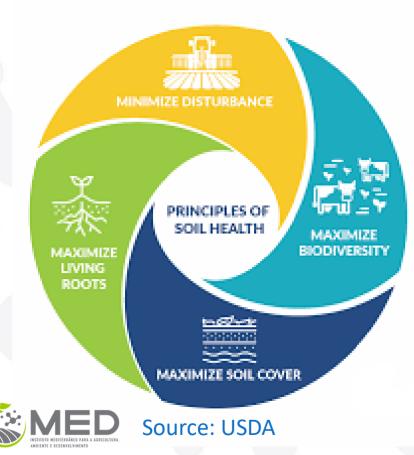
Ageing of the system

How can we halt soil degradation? Making Soil Functioning

#EUmissions #HorizonEU #MissionSoi

The 8 Mission objectives

- 1. reduce desertification
- 2. conserve soil organic carbon stocks
- 3. stop soil sealing and increase re-use of urban soils
- 4. reduce soil pollution and enhance restoration
- 5. prevent erosion
- 6. improve soil structure to enhance soil biodiversity
- 7. reduce the EU global footprint on soils
- 8. improve soil literacy in society


NEWS ARTICLE 9 June 2022 Joint Research Centre

Healthy soils, a necessity for the EU

What is "SOIL HEALTH"?

Soil health is presented as an integrative property that reflects the capacity of soil to respond to agricultural intervention, so that it continues to support both the agricultural production and the provision of other ecosystem services (ES).

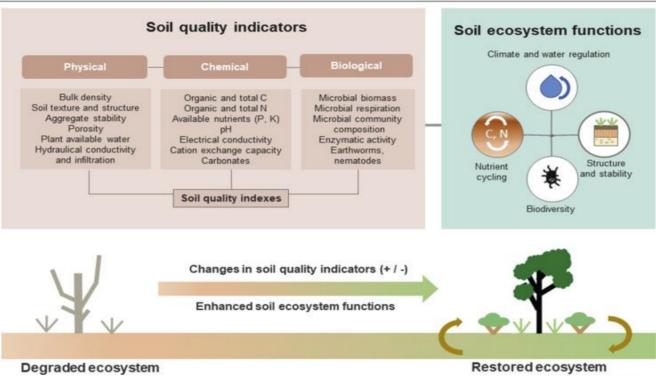
Soil health is dependent on the maintenance of <u>4 major</u> functions:

-carbon transformations;

-nutrient cycles;

-soil structure maintenance;

-regulation of pests and diseases

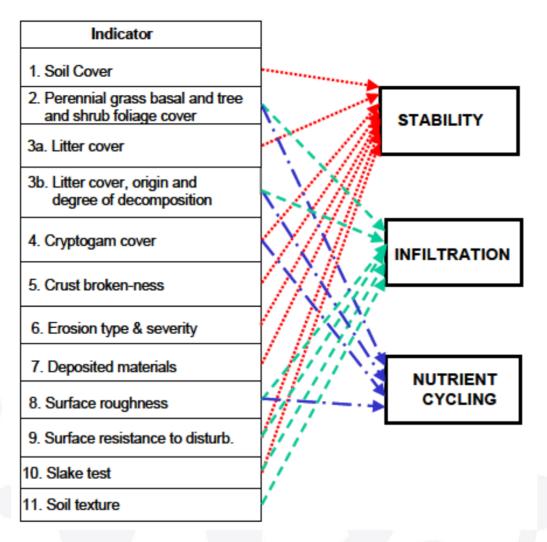


What is "SOIL QUALITY"?

The **capacity of soil to function**, to sustain plant and animal productivity, maintain or enhance water and air

quality, and support human health and habitation" (SSSA).

Muñoz-Rojas, 2018. https://doi.org/10.1016/j.coesh.2018.04.007



Evaluated in terms of **measurable soil attributes** that measure specific physical, chemical, and biological properties, known as **soil quality indicators (SQIs)**. The **applicable SQIs** are those that integrate the **combined effect of several properties or processes that affect the capacity of a soil to perform a specified function**.

What are "SOIL QUALITY INDEXES"?

Are a 'minimum set of parameters that, when interrelated, provide numerical data on the capacity of a

soil to carry out one or more functions'. They are a combination of <u>SQIs</u> to assess ecosystem changes.

Aim & Scope

To identify the current <u>soil health</u> status on the major soil types in the Montado system of central Alentejo, by using a <u>methodology</u> that <u>quantify and value</u> **SQI** by a chrono sequence approach. <u>Set-up</u> is based in a <u>paired treated/control</u> plots assessment. <u>Treated</u>-plot is a soil correction (*dolomitic limestone, sewage, ashes, ...,)*. In <u>Control</u>-plot any soil correction is implemented. The <u>effectiveness</u> of corrective measures will be <u>quantified</u> by comparing treated versus control plots.

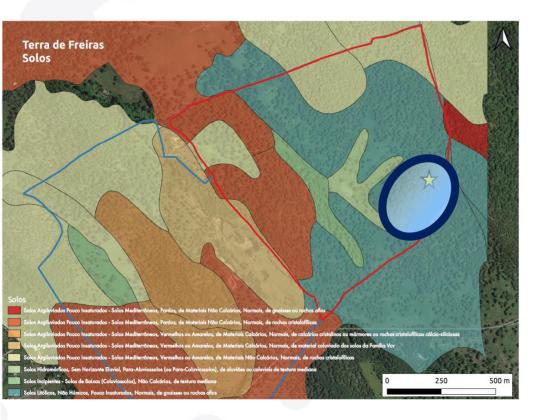
Her. Abegoaria_Dr. Caetano Oliveira Soares

Her. Abegoaria_No tillage >10years, Dolomitic limestone appl + ash + sewage sludge.

Neighbour Her. Abegoaria_Dr. Caetano Oliveira Soares

Her. Abegoaria_Neighbour. Tillage, No Dolomitic limestone

The **specific objectives** (3 major soil types) are:

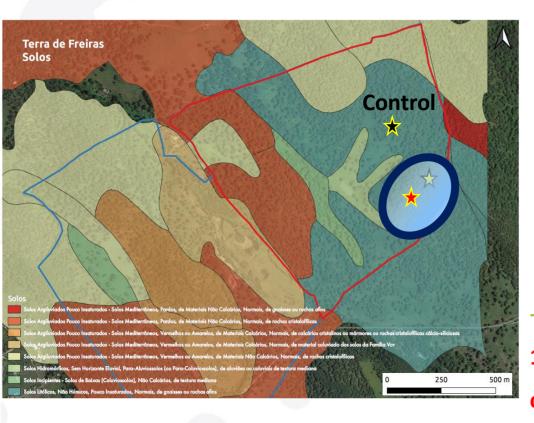

i) to characterize and quantify specific soil quality indicators (SQI) in the three major soil types;

ii) to develop visual indexes of soil functionality and validate the sensitivity with the SQI;

iii) to capture Montado's soil functions improvement after a soil correction (lime, ash, sewage, biochar, ..)

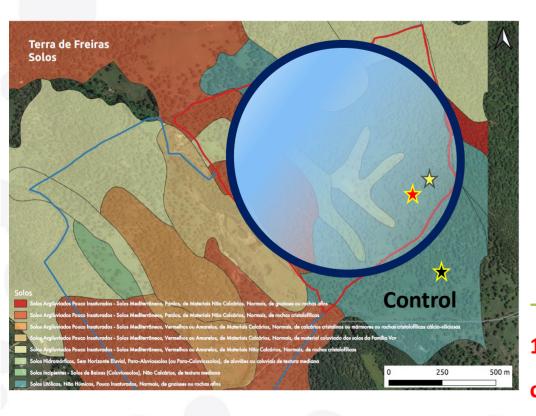
Data ADQUISITION	<mark>Data VAL</mark>	DATION	Da	ta VERIFICAT	ION	
		•			Soil t	type 1
		LANDSCAPE FUNCTION	Soil functions	Soil quality indicators	Control	Treated
Soil Quality Indicators (SQIs)	<u>Indexes</u> of		Water & Soil	BD (Mg/m ³)		
	-Soil Stability	* ANALYSIS:	Conservation	MWD (mm)		
BD	-SOII Stability	• •	Conservation	Field Capacity (%)		
MWD	-Infiltration	PROCEDURES FOR MONITORING AND		рН		
VIVU		ASSESSING LANDSCAPES		EC		
WHC	-Nutrient cycling			Labile SOM (%)		ļ
	, 0		Nutrient Cycling	P		
SWR				K CEC (Ca, Mg, Na,,)		
	VALIDATION	using SQIs		Micronutrients		
SOC		2		Microbiology		
nicrobiology	100			C-stored in Plant biomass		
0,	80			(Mg/ha)		
Nutrient (pH/EC/Pav/N)	80 <u>– – – – – – – – – – – – – – – – – – –</u>		Carbon	C-stored in Root biomass		
	. <mark>.</mark> ≩ 60	•	Sequestration	(Mg/ha)		
		(HTT)	Sequestration	SOC (Mg/ha)		
				BD (Mg/m ³)		
	20		Microbiology			
	0		D: 1: 1	Functional grass balance		
MED	0 100	200 300 400	Biodiversity	Vegetation biomass (Mg/ha)		
INSTITUTE MEDILERAKED ARA A AREFECTURA. AMIENTI E GAVORATIVINATO		MWD		(I	I

Practical approach


-Oct 20XX.-Control BEFORE TREATMENT ★ done by the land owner. 1 soil sample taken at Out Canopy and analysed for chemical (nutrient cycling): pH, EC, CEC, Micro, NPK, SOM.

+ Treatment-Calcario dolomítico (done by the land owner)

Practical approach


-Oct 20XX.-Control BEFORE TREATMENT A done by the land owner. 1 soil sample taken at Out Canopy and analysed for chemical (nutrient cycling): pH, EC, CEC, Micro, NPK, SOM.

+ Treatment-Calcario dolomítico (done by the land owner)

-Oct 2023.-Treated ***** lab analyses & field to be done in <u>MED (\$)</u> 1 soil sample taken at Out Canopy and analysed for chemical (nutrient cycling): pH, EC, CEC, Micro, NPK, SOM. + microbiological

-Oct 2023 Control \star lab analyses & field to be done in <u>MED (\$)</u> 1 soil sample taken at Out Canopy and analysed for chemical (nutrient cycling): pH, EC, CEC, Micro, NPK, SOM. + microbiological

Practical approach

-Oct 20XX.-Control BEFORE TREATMENT A done by the land owner. 1 soil sample taken at Out Canopy and analysed for chemical (nutrient cycling): pH, EC, CEC, Micro, NPK, SOM.

+ Treatment-Calcario dolomítico (done by the land owner)

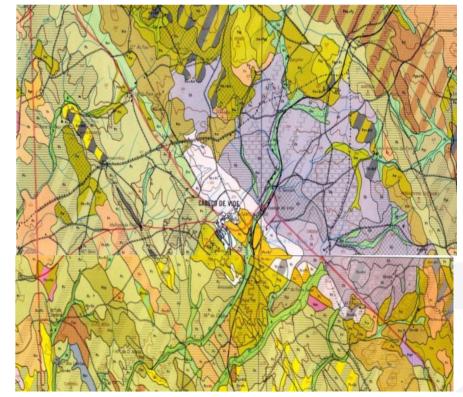
-Oct 2023.-Treated ***** lab analyses & field to be done in <u>MED (\$)</u> 1 soil sample taken at Out Canopy and analysed for chemical (nutrient cycling): pH, EC, CEC, Micro, NPK, SOM. + microbiological

-Oct 2023 Control *****. lab analyses & field to be done in <u>MED (\$)</u> 1 soil sample taken at Out Canopy and analysed for chemical (nutrient cycling): pH, EC, CEC, Micro, NPK, SOM. + microbiological WHY A SOIL CORRECTION in Montados' soils?? For instance: Dolomitic limestone

The typical Montado soil has an <u>acidic pH and manganese toxicity</u>, which affect the productivity and soil functioning. One of the low-cost alternatives suggested in this context is the application of dolomitic limestone as a way of improving soil fertility (Carvalho et al., 2015). That amendment of soil acidity is a slow and gradual process that <u>improves soil Mg/Mn ratio</u> and has a positive impact on pasture productivity and quality (Serrano et al., 2021).

The application of Dolomitic limestone should have an impact on soil properties thus

improving soil functions and this is what we aim to capture with the SQIs



Carvalho, M. et al. (2015). Rev. Cienc. Agrar.: 38, 518-527/ Serrano et al. (2021). Agronomy: 11, 514. https://doi.org/10.3390/agronomy11030514

WHAT ARE THE MAJOR SOIL TYPES ??

<u>Major soil types</u> FAO vs. SROA

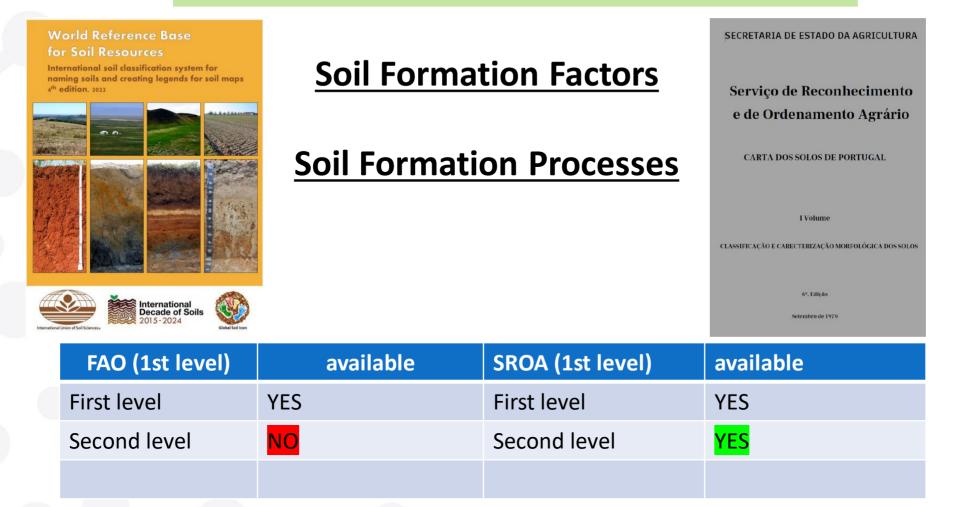
SROA, 1970 Carta de solos de Portugal **1:50.000**

Px - Solos Argiluviados Pouco Insaturados -Solos Mediterrâneos, Pardos, de Materiais Não Calcários, Normais, de xistos ou grauvaques)

 Pv - Solos Argiluviados Pouco Insaturados -Solos Mediterrâneos, Vermelhos ou Amarelos, de Materiais Não Calcários, Normais, de rochas cristalofílicas

Carta dos solos de Portugal (FAO)

1: 1 000 000


CAMBISSOLOS FLUVISSOLOS LITOSSOLOS LUVISSOLOS PLANOSSOLOS PODZOIS RANKERS REGOSSOLOS SOLONCHAKS VERTISSOLOS

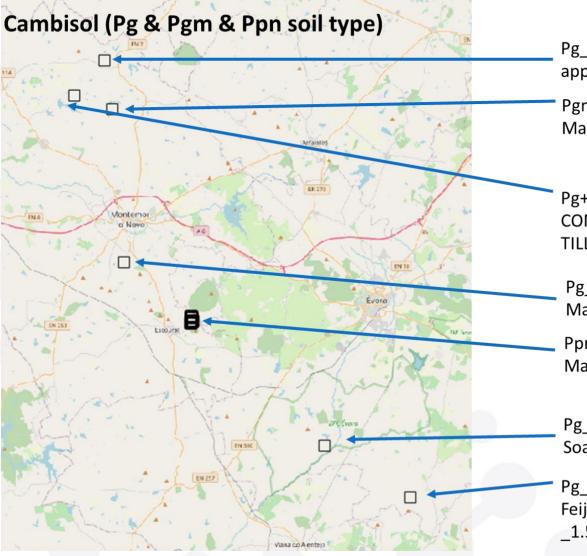
International Decade of Soils

SECRETARIA DE ESTADO DA AGRICULTO
 Serviço de Reconhecimen e de Ordenamento Agrári
CARTA DOS SOLOS DE PORTUGAL
1 Volume
CLASSIFICAÇÃO E CARECTERIZAÇÃO MORFOLÓGICA DOS S
67. Edição Selembro de 1970

WHAT ARE THE AVAILABLE SOIL MAPS IN PT ??

FAO soil maps based on PROCESSES (iluviation, humification,

SROA soil maps based on PROCESSES & **PROPERTIES**


WHAT ARE THE AVAILABLE SOIL MAPS IN PT ??

Huge soil type diversity in SROA maps. The most common soil types according to SROA (1970)

SITE SELECTION

Huge soil type diversity in SROA maps. The most common soil types according to SROA (1970)

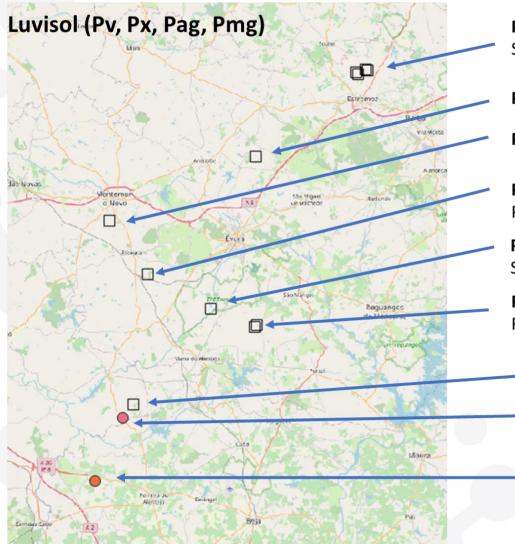
Pg_cambisol_Parreira_Nuno Marques_dolomitic application_2 tn/ha in 2016??

Pgm_cambisol_Fontes Portas_Nuno Marques_dolomitic application_2 tn/ha in 2016??

Pg+Pgm_cambisol_Her Lobeira_NEGATIVE CONTROL_NO DOLOMITIC APPLICATION AND YES TILLAGE

Pg_cambisol_São Mateu_Antonio Marques_dolomitic application_3 tn/ha in 2023

Ppn_cambisol_gneiss_Terra Freiras_Antonio Marques_dolomitic application_3 tn/ha_Nov2022


Pg_cambisol_Her. Camoeira_Dr. Caetano Soares_dolomitic application_3 tn/ha in 2013

Pg_cambisol_Her. em Torre Coelheiros_Monte das Feijoas dos Ramos_Lourenço Beja da Costa _1.5 tn/ha in 2018

SITE SELECTION

Huge soil type diversity in SROA maps. The most common soil types according to SROA (1970)

Px & Pv & Pm. Her. Barbosa e Serrinha_Francisco Guedes_Estremoz

Pv. Her. Coelheiros

Pv. São Mateu_Antonio Santos_3 tn/ha_2023

Pmg. Casa Agrícola Mira da Silva_Her. do Padrão_Casa branca_20211007_1Tn/ha

Pmg. Her. Camoeira_Dr. Caetano Soares_dolomitic application_3 tn/ha in 2013

Px & Pv. Lourenço Beja da Costa. Monte das Feijoas dos Ramos . Torre Coelheiros

Pag. Monte das Soberanas_João Santos_Torrão

Pag. Nuno Rodrigues_Her. Fontainhas in the plot "Poço de agua branca". 2023

Pag. Nuno Rodrigues_Her. Monte Branco in the plot "Primos". 2023

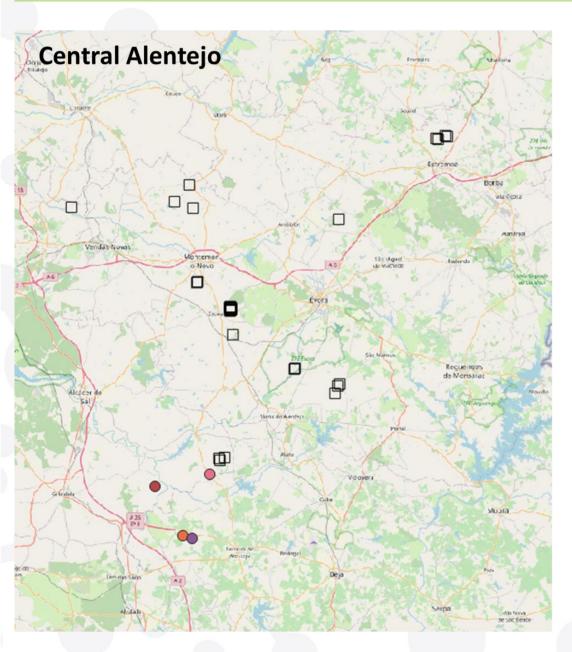
SITE SELECTION

Huge soil type diversity in SROA maps. The most common soil types according to SROA (1970)

Sandy soil. Rg & Ppt-Podzol soil types V In Franca Vendas Novas Montemor

Rg & Ppt_Her. Abegoaria_Vendas Novas_ Dr. Caetano Soares_2013 dolomitic application_3 tn/ha

Rg_sandy soil_soberanas_JSantos_Torrao_2022 dolomitic application_3Tn/ha


Rg_Varzea Redonda_Depósitos_Torrão_Nuno Rodrigues_2023 expected application_3Tn/ha

Rg_Monte branco_Toí da Engrossa_Torrão_Nuno Rodrigues_2023 expected application 3Tn/ha

Selected PLOTS

Total of 24:

SECRETARIA DE ESTADO DA AGRICULTURA Serviço de Reconhecimento e de Ordenamento Agrário CARTA DOS SOLOS DE PORTUGAI. Evonne elassificación el cuer trafface (o monecocica el dos solos)

CAMBISOL (granite bedrock, **Pg** & **Pgm & Ppn** type)- <u>6 plots</u> CAMBISOL (Schist bedrock)- <u>0 plots</u>

LUVISOL (sandy bedrock, **Pag** type)-<u>3 plots</u> LUVISOL (gneiss bedrock, **Pgn** type)-<u>2 plots</u> LUVISOL (granite bedrock, **Pmg** type)-2<u>plots</u> LUVISOL (schist bedrock, **Pv & Px** type)-<u>7 plots</u>

SANDY SOIL (sand bedrock, **Rg** & **Ppt** type)- <u>4 plots</u>

Cam

FAO	SROA									
Cambisol	Pg; Pgm; Ppm	Chronosequence approach based on Dolomitic limestone application								
nbisol (Pg & Pgm 8	k Ppn soil type)									
		ТО	T1	T2						
		Pg_ cambisol_São Mateu_Antonio Marques_dolomitic application_3 tn/ha in <u>2023</u>	Pg _cambisol_Parreira_Nuno Marques_dolomitic application_2 tn/ha in <u>2016?</u> ?	Pg_cambisol_Her.Camoeira_Dr.CaetanoSoares_dolomiticapplication_3 tn/ha in 2013						
		Ppn _cambisol_gneiss_Terra Freiras_Antonio Marques_dolomitic application_3 tn/ha_ Nov2022	Pgm _cambisol_Fontes Portas_Nuno Marques_dolomitic application_2 tn/ha in <u>2016</u> ??	Pg_ cambisol. Mitra. Application_3 tn/ha in <u>2013</u>						
			Pg _cambisol_Her. em Torre Coelheiros_Monte das Feijoas dos Ramos_Lourenço Beja da Costa _1.5 tn/ha in <u>2018</u>							

MED-CHANGE-UÉvora / Citizen -Synergies

-Synergies with MED SCIENTIFIC SOIL DATASETS?

Precision Agric (2016) 17:274–295 DOI 10.1007/s11119-015-9419-4

Monitoring of soil organic carbon over 10 years in a Mediterranean silvo-pastoral system: potential evaluation for differential management

J. M. Serrano¹ \cdot S. Shahidian¹ \cdot J. Marques da Silva¹ \cdot M. Carvalho¹

MDPI

Article

Can Soil pH Correction Reduce the Animal Supplementation Needs in the Critical Autumn Period in Mediterranean Montado Ecosystem?

João Serrano *[®], Shakib Shahidian, Francisco Costa, Emanuel Carreira, Alfredo Pereira [®] and Mário Carvalho

-Synergies with PRIVATE SOIL DATASETS?

Her. Barbosa e Serrinha. F. Guedes. Estremoz

Torrão_Casa agrícola M. Gil Ferreira

Casa Agrícola Manuel Gil Ferreira +351 265 669 424 geral@mgilferreira.com Beco dos Castelos,9 7595-104 Torrão - Portugal

Herdade	Parcela	Área da Pa	Coberto	Textura deCcFrCalagem STipo de correctivo			Qtd aplica Data (Prad Data instalação do prad Cortipo de solo				Remarks		
Fontaínhas	Poço da Á	54	Sobro	Arenoso	AIT	S	Calcário Dolomítico (tudidol)	1000 ####	S	01/10/2021	htt	Pag (Luvisolo) + Vt (Cambisolo)	Luvisolo
Monte Branco	Primos	39	Azinho	Média (ca	FeFi	Ν	Calcário Dolomítico (tudidol)	3000	S	01/10/2021	htt	Pag (Luvisolo)	Luvisolo
Várzea Redonda	Depósito	42	Sobro	Arenoso	AIT	N	Calcário Dolomítico (tudidol)	2000	Ν		htt	Rg-Regosolo_Ppt-Podzol + Rg-Regosolo+Pz-Podzol	Arenosolo
Monte Branco	Tói da Eng	70	Sobro	Arenoso	FeFi	N	Calcário Dolomítico (tudidol)	2000	Ν		htt	Rg-Regosolo	Arenosolo

-Necessity to know SOIL HEALTH status and how their FUNCTIONS are working & interacting.

-Each <u>SOIL TYPE</u> has its <u>own attributes</u> that perform different Soil Functions.

-Define <u>simple & measurable SQIs</u> by <u>SOIL TYPE</u>.

ACKNOWLEDGEMENTS

-MED-CHANGE-U.ÉVORA people

-MED-CHANGE-U.ÉVORA facilities

-Labscape team

-Private Land owners & land Technicians & Associations

-Prof. Mário de Carvalho

Obrigado pela vossa atenção www.med.uevora.pt

oscar.pelayo@uevora.pt

