

MIXED production at the landscape level: an emergy assessment on Montado systems under the same management.

Joana Marinheiro, Ana Fonseca, Cláudia Marques-dos-Santos

- Contextualization
- Case studies
- Emergy Assessment
- Results
 - Emergy of each farm
 - Emergy indicators of the systems and individual products
- Conclusions

- Cultural Landscape
- ✤ High Nature Value (HNV) system
- Challenges
 - Tree regeneration -> desertification
 - Raise of Cattle -> decrease of local breeds and more traditional livestock (sheep, pigs)
 - Rural abandonment -> decreasing workforce available
 - Depreciation of product's marketed values

Municipality: Montemor-o-Novo

District: Évora

Terra das Freiras (TF)

- Area: 175 ha
- Sheep:
 - Regional merino sp.
 - 870 sheep / yr

Source: www.merina.pt

- Forest: ~ 50 trees / ha (98% cork oak, 2% holm oak)

Herdade das Lages (HL)

- Area: 440 ha

Cattle:

- Mixed breed: Charolês (~60%) / Black Breed (~70%)
- 70 cows / yr + 80 calves / yr

Pigs:

- Black Iberian
- 80 pigs / yr

Forest: ~40 trees/ha

Extra activities: Hunting, wild mushroom and asparagus

Reguenguinho (Rg)

- Area: 70 ha
- Olive orchard: 50 trees/ha
- 600 bales / yr

Definition: The available energy required directly and indirectly to generate a product or a service.

Units: solar emjoules = sej

Formula: Emergy (sej) = Raw Units (unit) * UEV (sej/unit)

UEV – Unit Emergy Value is the amount of emergy required to produce a given amount of mass or energy of a product.

Product	UEV	Units
Phosphorous	1.67E+10	sej/g
Limestone	7.23E+06	sej/g
Sun radiation	1	sej/J
Fuels and Lubricants	8.53E+04	sej/J

Annual Scientific Production – Emergy method applied to agricultural systems

R

Ν

Р

s

Emergy Exchange Ratio

- EER < 1 Emergy benefit to the producer EER = 1 Indicates a fair trade
- EER > 1 Emergy benefit to the buyer

Emergy Investment Ratio

EIR- Low : Dependable on local resources EIR – High: Most inputs are paid, weakens the competition ability

Emergy Sustainability Index

ESI < 1 developed consumer-oriented systems 1 < ESI < 5 developed economy with low impact

ESI > 10 underdeveloped economies

EER < 1 Emergy benefit to the producer EER = 1 Indicates a fair trade EER > 1 Emergy benefit to the buyer

EIR- Low : Dependable on local resources EIR – High: Most inputs are paid, weakens the competition ability

ESI < 1 developed consumer-oriented systems 1 < ESI < 5 developed economy with low impact

ESI > 10 underdeveloped economies

Individual products Indicator

Cork_TF

Sheep

Cork_HL

EER

EIR

ESI

6 -

4 -

2-

0 -

Cattle

Value

Sheep production value has not been matched by the market value of its products;

Cattle production is more prone to be less sustainable. Forage purchase can have a big impact on terms of investment and environment;

A sustainable management of farms should contribute to the differentiation and valorisation of its product;

Multifunctional systems, with an economy of scope, can help mitigate the impacts on investment and on the environment.

THANK YOU!

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 862357

Indicator	Formula	Description
EYR – Emergy Yield Ratio	EYR = Y / P	Ratio of the total emergy used to the emergy
		invested from the economic system.
ELR – Emergy Loading Ratio	ELR = (N + P) / R	Indicates the pressure of a process on the local environment.
ESI – Emergy Sustainability Index	ESI = EYR / ELR	Based on the assumption that more sustainable
		systems have higher ability to exploit free local
		resources whilst creating less pressure on local
		environment.
EIR – Emergy Investment Ratio	EIR = P / (N + R)	Indicates if the process is a good user of the emergy
		that is invested, in comparison with alternatives.
EER – Emergy Exchange Ratio	EER = Y/Em\$	Ratio of emergy exchange in a trade or purchase.
		If EER = 1, there is a balanced exchange;
		if EER > 1 the consumer takes advantage of the producer.

Similar Systems	ESI	EIR	EER	Refs
Fully integrated mixed sheep and permanent crops in Spain;	2.27	0.86	10.68	
Semi-intensive of sheep with pasture rotation in Brasil;	1.13	4.49	0.09	
Grazing cattle Argentina	6.80	0.37	-	

		ESI			EIR	
	Crop	Mixed	Livestock	Crop	Mixed	Livestock
Avg	1.42	1.67	0.90	2.31	2.14	17.23
Max	8.74	10.94	3.86	12.67	3.88	42.65
Min	0.03	0.30	0.02	0.19	0.62	4.49
n	27	18	14	20	11	3

Comparação entre sistemas especializados e mistos